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Critical Exponents for the Contact Process under the
Triangle Condition
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We show that a continuous-time version of the triangle condition for percola-
tion implies mean-field values for several contact process critical exponents. Our
results support the belief that the upper critical (spatial) dimension for the
contact process is four.

1. INTRODUCTION

The contact process is an interacting particle system which, due to its
percolation substructure, often becomes tractable when studied using
percolation-theoretic techniques (see [D2], [Gl], [H2], and [L]). The
contact process can be regarded as modeling the spread of an epidemic
through a population; although the process itself is dynamic, its entire
history is a static (oriented) percolation model. Sites in some underlying
lattice heal and are infected by sick neighbors independently; when the
ratio of infection rate to healing rate is small (subcritical), the radius of
some initially finite infection has an exponentially decaying tail, whereas
when the ratio is large (supercritical), every initial infection has a positive
probability of persisting forever. It is of particular interest to study the
behavior of various quantities in the vicinity of the critical point which
separates these two regimes. These quantities (one of which is the probability
of infinite persistence of an infection starting at a single site) are expected
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to display power law behavior as the ratio parameter (or some other
parameter) is varied near its critical value. The exponents in these power
laws are called critical exponents, and they are predicted by universality
arguments to depend only on the lattice dimension. It is further believed
that above a certain upper critical dimension, the critical exponents also lose
their dimension dependence, and simply assume their mean-field values.

We prove that when a contact process analogue of the Barsky-Aizenman
triangle condition for percolation is satisfied, several critical exponents
(B, y, d) take on their mean-field values. Our work is based on the analysis
of [BA] and [AN]. A triangle condition for (unoriented) percolation
models was first introduced in [AN], where a pair of complementary dif-
ferential inequalities were obtained to prove that this condition implied the
mean-field value for y. Nguyen [Ng] further showed that the gap
exponents were mean-field under the same condition. An extension of this
condition was proven in [BA] in the context of POP (partially oriented
percolation) models to lead to a differential inequality complementary to
one in [AB], with the result that B and d were also mean field. For
unoriented percolation, the triangle condition was verified by Hara and
Slade [HS] in high dimensions—in the case of a spread-out model, this
meaning d>6, by using the lace expansion method. Using the same
method, Nguyen and Yang [NY] verified the triangle condition for an
oriented percolation model, but in this case the condition is already met for
a (spread-out) model on Z.d with d>4. To complete the picture for the
contact process on Zd, one needs to do two things: (1) prove that the
triangle condition for the contact process implies the mean-field behavior
(the analogue of the diagrammatic inequality analysis of [AN] and [BA]),
and (2) verify the triangle condition for the contact process (the analogue
of the lace expansion analysis of [HS] and [NY]). This paper addresses
problem (1). Problem (2) is still open; a complete extension of the
machinery of [HS] and [NY] to the contact process has not yet been
made, although it is generally believed (see [NY]) that the triangle condi-
tion for the contact process should also be satisfied when d> 4. Our results
together with this belief imply that the critical exponents for the contact
process assume their mean-field values when d > 4. The class of models we
consider includes both the basic (or nearest-neighbor) contact process and
spread-out processes. Our arguments are in a form which allows for their
extension to the case of infections of unbounded range with a minimal
amount of difficulty, although our focus is on finite-range models. Our
results are valid for the contact process on any vertex-transitive lattice, and
probably the vertex-transitivity requirement is not crucial. For nearest-
neighbor contact processes on trees [P], it was shown in [W] that the
triangle condition is satisfied when the degree of the tree exceeds 4. This
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last result has recently been extended in [S] to the case of trees with
degree 2 or more—a tree of degree 1 being the line.

Our basic strategy is to look for differential inequalities that can be
integrated to show that the behavior of some observable in the vicinity of
the critical ratio is always bounded by the behavior of its mean field
approximation. Our two fundamental differential inequalities are the con-
tact process analogues of percolation inequalities from [AN] (used in the
analysis of y) and [BA] (used for B and d). We prove the contact process
version of the first of these, the second already being done in [BG2]. Both
inequalities are obtained by neglecting certain overlapping routes of infec-
tion. We estimate this effect and derive complementary inequalities (by an
inclusion-exclusion argument, called factorization in [BA]); under the
triangle condition, the correction terms can be controlled through a delo-
calization argument.

We obtain the differential inequalities in finite space-time volumes by
discretizing the contact process and then reworking percolation arguments
in the spirit of [AN] and [BA]. We comment here on how our work dif-
fers from these papers, and on why it is not possible to directly apply their
results to an oriented percolation model and then simply pass to the limit
to get the corresponding results for the contact process. First, although the
discretization of any finite-range contact process is a "well-connected" POP
model in the sense of [BA], a naive application of the delocalization proce-
dure(s) of ([AN] and) [BA] leads to complementary inequalities that
become meaningless in the continuum limit (because the factor multiplying
the lower bound goes to zero). We present a new delocalization argument,
taking advantage of the Markov property of the contact process, that not
only avoids this problem, but which also allows us to treat together the
finite- and long-range cases—which were separately handled by different
arguments in [BA]. (In [AN], delocalizing was discussed only for finite-
range models.) Second, in the factorization step, in order to get the correct
scaling for the continuum limit to work, we must use estimates on the
probabilities of infection passing through specified sets that are more
detailed than those of standard percolation; this introduces some lower
order diagrams (such as the bubble) which are bounded by the triangle,
but which do not explicitly appear in [AN] or [BA]. Finally, instead of
separate ad-hoc arguments for the two pairs of differential inequalities (one
for B and d, and another for y), we provide a single unified framework for
delocalizing and factorizing that applies equally well to both situations,
thus emphasizing that the derivations of these inequalities are largely the
same, and not just roughly analogous.

In Section 2, we define the contact process, give precise statements of
our results, and introduce the finite volume and discretized models. We
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integrate the finite-volume differential inequalities to get the power laws in
Section 3. The general delocalization and factorization arguments are given
in Section 4 (with one proof deferred to an Appendix), and in Section 5
they are specialized (under the triangle condition) to yield the differential
inequalities used in Section 3.

2. THE SET-UP

2.1. The Continuous-Time Model

We define here the contact process on Zd, the of-dimensional integer
lattice. We use the graphical representation of Harris [H1], [H2] (see also
[D2], [Gl], [G2] and [L]), in which we first form a larger graph L by
taking the Cartesian product of the space Zd with a time-axis: L = Zd x
[0, oo). Along each time-line {x} x [0, oo) (which we regard as being verti-
cal), let there be an independent Poisson distribution (with density 1) of
points which mark deaths of the infection. For each ordered pair of time-
lines, say {x} x [0, oo) and {y] x [0, oo), there is an independent Poisson
process (with density LJ x y ) , that serves to mark when an infection can
spread from x (if it is currently infected) to y; an arrow is drawn from
X= (x, t) to Y = (y, t) for every point t of this process. Our convention is
to use capital letters for points in L, and lower case letters for their spatial
and temporal components.

We require the parameters Jxy to be nonnegative, translation invariant
(Jx+z,y+z

 = JXy for all x,y and z in Zd), and such that 0< |j| =EyeZ
dJxy

We consider the finite-range case, where there is an R such that Jxy = 0
whenever |x — y| > R (take )•) to be the l1,-norm on Zd: |x| = |x1| + ••• +
|xn

| for x = (x 1 , . . . ,x n ) ) ; if one were to use our arguments for infinite-range
models, one would have to require that |j| < oo. For simplicity, we also
assume that Jxy = Jyx, although this requirement could be relaxed at the
expense of a slightly more complicated construction in Section 4.

We say that .y is a neighbor of x if Jxy is positive, and extend this
notion to points in space-time by saying that Y=(y,t) is a neighbor of
X= (x, t) when y is a neighbor of x. For the basic contact process, Jxy

is 1 if \x — y\ — 1, and 0 otherwise. For a contact process similar to the
spread-out oriented percolation model of [NY] (see also [HS]), one
requires Jxy to be exponentially decaying in |x — y | .To simplify the nota-
tion, we fix the parameters Jxy beforehand (which amounts to fixing the set
of neighbors, and the relative infection rates), and only vary L over (0, oo).
We write PL and EL for the probability measure and expectation operator
arising from the product of the independent death and arrow processes.
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A point (x,t1) in L is said to be connected to another point (y, t2) if
and only if it is possible to trace a path from (x, t1) to (y, t2) that only uses
arrows (in the direction that they point) from time-line to time-line and
vertical segments along time-lines between deaths—with those segments
being traversed in the upward direction; note that such a connection can
only occur if t2>t1 We write " ( x , t 1 ) -» (y, t2)" to denote the event that
(x,t1) is connected to (y, t2); more generally "(x, t1) -*• D" means that
(x, t1) is connected to some point in DcL Define the cluster of (x, t) to
be the set of all points in L to which (x, t) is connected: C ( x , t ) =
{ ( y , t ' ) : (x, t) -> (y, t ' ) } . In the special case of the space-time origin, O, we
write C for C(O).

One of the important quantities in the study of the contact process is
the survival probability

The critical point is defined to be

it is well —known that 0<L c<oo. Another key quantity is the expected
total duration of the infection

where ||C|| is the (one-dimensional) Lebesgue measure of C (in space-time),
and card(A) is the number of points in A. It is a fundamental result of
[BG2] (see also [A]) that additionally

The exponents B and y characterize the behavior of 0 and x as the
critical point is approached, and d describes the decay of the size of the
critical cluster:

and
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We prefer to describe 6 in terms of the Laplace transform of the (critical)
distribution of ||C||:

the correspondence between (2.7) and (2.8) may be made via a Tauberian
theorem (see, e.g., [F]).

A convenient interpretation for the quantity in (2.8) is obtained
(following [AB], [BA]) by turning the parameter h into a ghost field.
Specifically, we put an independent Poisson distribution (with density h) of
green points (or ghost sites) along each timeline, and denote their entire
collection G. Writing

(where the last equality is most easily seen by conditioning on \\C\\), we
have by the Dominated Convergence Theorem that

An important related quantity is

whenever 0(L) = 0,

2.2. Statement of Results

Our triangle condition is that

where V(L; r) is a triangle diagram function with one vertex opened (spa-
tially) by at least distance r.
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Condition (2.13) is a rather natural extension of the Barsky-Aizenman
triangle condition for (discrete) POP models to the (continuous-time)
contact process; note that only the spatial coordinates of O and (z, s) are
required to be widely separated.

We shall show that when the triangle condition (2.13) is met, then
there exist positive constants c1,..., c6 such that for L. sufficiently close to Lc

and (positive) h sufficiently close to 0,

and

Remarks. 1. The lower bounds in (2.15) and (2.17) were already
established for the contact process in [BG2] (see also [A]); we shall prove
the remaining four inequalities, with the upper bounds (underset with a V)
being obtained under the triangle condition.

2. One consequence of the upper bound in (2.15) (or in (2.17)—see
(2.10)) is that finite infections die out w.p.l at the critical point: 0 ( L C ) = 0.
However, this result has already been shown to hold for the contact
process on Zd in [BG1] and [BGr], and on trees in [P] and [MSZ]—
without making any use of the triangle condition, upon which our argu-
ment depends.

3. In proving the lower bound in (2.16), we demonstrate the
divergence of x (A) as L>Lc. By the monotonicity of x in L, it then also
follows that x ( L c ) = °°.

We restate inequalities (2.15)-(2.17) in terms of their implications for
the critical exponents, and in the order in which they will be proved.

Theorem 1. When the triangle condition (2.13) is satisfied, then

(a) d = 2—in the sense that (2.17) is satisfied,

(b) B= 1—in the sense that (2.15) is satisfied, and

(c) y= 1—in the sense that (2.16) is satisfied.
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In proving the right-hand sides of (2.l5)-(2.l7) we need to control, in
addition to the triangle, a pair of lower order diagrams: the bubble and the
arc:

and

It is obvious in ordinary percolation and Ising models that the arc is no
larger than the bubble, which is no larger than the triangle. We quickly
outline a proof of related inequalities for the contact process:

Note that " (z ,s ) -»(z, t)" occurs if there are no deaths along the z time-line
between times s and t—which happens with probability e ~ ( t - s ) By the
Markov property of the process, we thus have

hence

The first inequality in (2.20) follows immediately from (2.22), and the
second has a similar derivation.

2.3. The Finite-Volume Model

For L>0, let AL = [ -L, L]dJ Zd and write AL = AL x [0, L]. We
build the contact process on AL (up to time L) by the graphical construc-
tion of Subsection 2.1. For technical reasons, we choose to use free bound-
ary conditions in both space and time, i.e., we do not allow the connecting
paths to use arrows terminating or originating on a time-line {x} x [0, oo)
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with x$ [ — L, L]d, nor may they cross Zdx {L} along the timelines. (The
choice of temporally free but spatially periodic boundary conditions would
slightly simplify some arguments in Section 5, but only at the cost of other
inconveniences [BW].) Write P*L (resp., PL*) for the measure corre-
sponding to the arrow and death (resp,, arrow, death and green) process
in the finite space-time volume AL, and denote the associated expectation
operator by E*L.

The finite-volume quantities ML(L, h ) , x L (L , h ) , x L (L . ) , Vt(L, r•), BL(L, r)
and A L ( L , r ) are defined by (2.9), (2.11), (2.3), (2.14), (2.18) and (2.19),
resp., with the changes that C is replaced by CL (the cluster of the origin
in AL), G is replaced by GL (the set of green points in AL), infinite-volume
probabilities and expectations are replaced by their finite-volume counter-
parts, sums are restricted to sites in AL, and integrals are restricted to
times in [0, L].

The natural coupling between the finite- and infinite-volume processes,
shows that CL / C as L -» oo, and so, by the Monotone Convergence
Theorem, ML(L, h) -> M(L, h) and xL.(L) -»x(L) in the infinite-volume limit.
It is also convenient to introduce another finite-volume quantity related to
xL(L):

Note that

since for each L we have xL(L) <xL(L) <x(L). The only other fact regarding
the comparison between finite- and infinite-volume processes is the trivial
(in light of the monotonicity in L of two-point connection probabilities)
observation that the finite-volume arc, bubble and triangle diagrams are all
bounded above by the corresponding infinite-volume diagrams.

2.4. The Discrete-Time Model

Here we discretize the contact process (in the finite volume AL) to
obtain an oriented percolation model on the graph AL e = ALx
(eZn[0, L]). Connections in this model are made along (paths of) open
oriented bonds, which come in two types: the horizontal bond from
X = ( x , t ) to Y=(y, t) which is open with probability eLJx y, and the verti-
cal bond from X=(x,t) to Z = ( x , t + e) which is open with probability
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1 — e . (When the ghost field is present, one also colors sites green with
probability Eh; the collection of all such sites is denoted GL_e.) All of the
bond (and color, if h>0) random variables are independent. The measure
for this process is denoted PL£ e (or PL,ê

h if there is a ghost field).
The important observables in the discrete model are direct analogues

of their continuous time cousins (here we freely borrow the connection
notation of Section 2.1):

(where [a] is the greatest integer no larger than a), and

So as to avoid problems taking the limits of suprema, we take as our
discretized diagrams

VL , e (L;r 1 , r 2 , s )

B L , e ( L ; r 1 , r 2 , s )

and

It is the case that PL
L,e=>PL

L and PL,h
L,e=>PL,h

L (see, e.g., [BG2]); from
this we can conclude that the discretized quantities in (2.25)-(2.28) con-
verge to their continuous-time (finite-volume) counterparts, and the limits
of the discretized diagrams in (2.29)-(2.31) are bounded from above by
VL(L.; r 1 ) , BL(L; r1,) and AL(L, r), resp. As it may not be quite so clear how
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one computes the e\0 limits of the quantities in (2.26)-(2.30), we
demonstrate the convergence of XL,e to XL—the other limits can be treated
similarly. From the more detailed expression for XL,B in (2.27), we see that
it suffices to show that for each yeAL,

To prove (2.32), interpret the sum on its left-hand side as the integral of
a step function, and then apply the Bounded Convergence Theorem—the
main reason for working in the finite volume AL is being able to apply this
convergence theorem when taking continuum limits such as in (2.32). See
Lemma 2 in [W] for a similar, but more detailed, argument.

3. IMPLICATIONS OF THE TRIANGLE CONDITION

Propositions 3.1 and 3.2 contain the statements of the differential
inequalities that are derived in Section 5, and used here to prove Theorem 1.

Proposition 3.1. Let 0 < L0 < Lc and assume that the triangle con-
dition (2.13) is satisfied. Then there exists a (positive) constant c such that
for every 0<h 0<h 1 < oo we can find an L0 for which

on all of [L0, Lc] x [h0, h1] whenever L > L 0 .

Proposition 3.2. (a) For all L > 0 and L,

(b) Assume that the triangle condition (2.13) is satisfied. Then there
exists a L0 in (0, Lc) and a (positive) constant c such that for every
L1, e(L0, Lc) there is an L0 for which

on [L0,L1] whenever L>L 0 .
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Proof of Theorem 1a. We only need to prove the upper bound on
M(LC,h) in (2.17), as the other bound was already proven in [BG2].
Integrate (3.1) from h0 to h1 with A held fixed at some L'e [L0 ,Lc), next
take the infinite-volume limit, and then send h0 to zero to obtain

(Recall from (2.10) and (2.2) that l i m h 0 >ML(L, h0) = 0 ( L ' ) = 0.) Recall
that

By a standard argument, pL(||C|| < t) is a continuous function of X for any
t>0 (it only depends on the process up to a finite time). So M(L, h) is a
continuous function of A for any h>0 by the Helly-Bray Theorem (cf.
[CT]). As (3.4) is a uniform bound for all L' e [L0, Lc), we get the desired
upper bound on M ( L c , h ) by letting L' / Lc. |

Proof of Theorem 1b. The lower bound in (2.15) was proven in
[BG2], The upper bound follows from the upper bound in (2.17) by a set
of extrapolation principles proven in [AF] (also see [N])—where they
were used for the Ising model—and restated in [AB] and [BA]—where
they were applied to percolation. These extrapolation principles use a
Burgers inequality (proven for the contact process in [BG2]) to relate
critical behavior along different rays through the critical point (L = LC,
h = 0). In this particular context, they tell us that the upper bound in (2.17)
implies the upper bound in (2.15). |

Proof of Theorem 1c. By integrating (3.2) from L' (<L C ) to A"
(> Lc, we get

It follows from (2.4) and (2.24) that l im L _ > 0 0 (x L ) - 1 vanishes at L = L", and
so (using (2.24) again) we have

Now let L" \ Lc to obtain the lower bound on x in (2.16).
Under the triangle condition, we also have inequality (3.3) which we

integrate over [L, L1] (with L 1 ,<L C ) . One then takes the infinite-volume
limit, and sends L1, to Lc to get the desired upper bound on x. |
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4. DELOCALIZATION AND FACTORIZATION

Throughout this section, we use P to represent the discretized finite-
volume probability measure, PL,h

L,e.

4.1. Delocalization

We will show how to bound the probability of an event S(X, X D; n}
(defined immediately below) from below in terms of the probability of a
point-split version of that event $S(X, X ' ;D;n ; r) (defined further below).
Fix a pair of horizontally (i.e., spatially) neighboring sites, X and X', in
AL e, let n be either 0 or 1, and take D to be either GL e (the ghost set) or
else some deterministic subset of AL £. Then &(X, X'; D; n) is the event that

• O -» X, but O -->D off { X } , and

• X' is connected to some site in D, X is connected to n site(s) in D,
and if n = 1 the two connections to D may be traced in site-disjoint
way.

Of course, if n = 0, the condition that X be connected to 0 sites in D is
vacuously satisfied.

To prove Proposition 3.1, we set D = GLs and n=1 , while for
Proposition 3.2, D is a site YeAL-c (over which we sum) and n = 0.
Readers can make this subsection more understandable by focusing on the
case n= 1—as we do. We comment that our argument is easily extended to
the cases where n> 2 and where there are several disjoint connections from
X' to D—but such generality is not needed here.

There are n + 2 different connection events in the original event $,
each of which involves either X or its neighbor X': there is a connection
arriving at X from the origin, X' is connected to a site in D, and X is con-
nected to n sites in D. Since the correction terms which lead to the com-
plementary inequalities arise out of intersections between these connections
we want to physically separate the n + 2 connections. This will be done by
having the n = n + 1 connections to D emanate not directly from X and X',
but rather from some n jump-off sites moved into the future, and also
spatially separated from one another.

To delocalize S, we "rewire" the connections from X and X'
( = X+(e,0)) to get disjoint connections from nearby, slightly earlier sites
X and X' to much later, widely separated sites Z1, and Z2, and from there
to D; note that the Markov property of the contact process ensures that
changing connections between the time of X (or X") and the time of Z, cannot
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destroy connection events from O to X, or from Zi, to D. Specifically, we
take these sites to be

and

where r is a positive integer, e is the spatial part of X' — X (or of X' — X),
and Ms a sufficiently large positive integer multiple of e—we shall take
t = (r+1)[1/e]e. In Section 5 we will control the diagram functions by
taking r to be sufficiently large; t is a period of time long enough for us to
perform a delocalization that is well-behaved in the continuum (e \0) limit.

The delocalized or (point-split) event SS(X, X D; n+ 1; r) is defined
for X, X', D, n and r as above is the event (a special instance is illustrated
in Fig. 1) that

. O ->• X, but O /> D and

. Z1->D off C(O) (and, if n = 1, Z2-> D off C(O)u Ĉ (Z1)).

In subsequent work with Ss, it will be convenient to use n = n +1, the
required number of disjoint connections from X and X to D, in place
of n, the required number of connections from X to D.

To compare the probabilities of $ and Ss we will introduce in the
proof of Theorem 4.1 a pair of (independent) events J^ and ^ with the
properties that Ss is a subevent of OF, and J^ n G is contained in $. For
such a pair of events, we have

Roughly speaking, the independence of J^ and 0 will follow from the fact
that one event belongs to a cylinder over some subset B of AL e, and the
other belongs to the cylinder over the complement of B. The set B has the
form of a 1 + 1 dimensional space-time box in AL,e (see Fig. 1):

Observe that the sites Z1 and Z2 are on the top of B(X r, t).

Theorem 4.1 (Delocalization). Let S = S(X, X'; D;n) and <% =
£s(X,X' D ; n ; r ) be as defined above, with X, X', X, X ' , Z 1 , Z 2 € A L , e ,
n = n + 1, and either D = GL e or else D is a deterministic set that is not too
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Fig. 1. The intersection of the events F and G. Outside of the box B ( X ; r , t), bold lines
indicate connections made along open bonds, and the dashed lines indicate the surfaces sur-
rounding various clusters. Inside B(X; r, I), the arrows indicate open bonds, and the asterisks
mark deaths (closed vertical bonds).

close to X 'in the sense that D r B(X; r, [ 1/e] e) = 0. Let 0<L0<L1 < cc and
0 <h1 < oo. Then there exists a positive constant a = a(L0, L1, h1, J0,e; r, t)
such that, for {L, h)e [L0 L1,] x [0, h1,],

Proof. Our plan is to define events & and (S for which we are able
to verify (4.2), and then to calculate P('S) We begin by considering the
event & = &(X, X"; D n ; r ) (see Fig. 1) that

. O -> X, but O /* D off B(X; r, t), and

. Z1-»D> off C(O) (and, if n = 2, Z2 -> D off C(O)u C(z1,)).

It is clear that S',(X, X'; D, n; r} a J*, which gives us the first inequality
in (4.2).



We next need to find a "rewiring" event (S in the cylinder over
B(X; r, t) whose intersection with ^ implies the occurence of S. To define
such an event, we need to (i) make certain that there are no deaths along
the common time-line of X and X in the first macroscopic time unit (so
that O -» X), ( i i ) seal off the bottom of the box B with deaths (except along
the time-line containing X) and keep any horizontal bonds from entering
or leaving B (so that the origin is not connected to D), and ( i i i ) build con-
nections inside B from X and X' to the appropriate Z,'s—say, along a (pair
of) staircase(s) of horizontal bonds. So we now define & = &(X, X'; D; r)
to be the event (see Fig. 1) that

(1) no sites from D are within [ 1/e] e time units of the bottom of the
box: DnB(X;r, [1/e]e) = 0,

(2) each time-line, except the one containing X, has at least one
death in the box within [1/e] e time units of the bottom of the
box,

(3) there are no other deaths in B(X; r, t) besides the ones required
in (2),

(4) for each k = 2,..., r, there exist "times" sk<1 and sk, 2 with k[ 1/e] e <
sk,1, sk,2<k[1/e] e such that there are open horizontal bonds
from X + ( ( k - 1 ) e , s k , 1 ) t o X + (ke, sk, 1) and from X + ( ( 1 - k ) e ,
sk, 2) to X + (- ke ,sk, 2) (—the possibility of there being several
times sk,i is allowed), for k= 1 there exists a time (or times) s1,2,
with [ 1/e] E <S1 , 2 =2[ 1/e] e, at which there is an open horizon-
tal bond from X + ( 0 , s 1 , 2 ) to X + ( - e , s 1 , 2 ) , and

(5) there are no other open horizontal bonds having one or both
endpoints in B(X; r, t) aside from those mentioned in (4).

Notice that 0 and ,1F depend on nonoverlapping sets of random
variables; hence we have the equality in (4.2). Next complete the proof of
(4.2) by observing that i must occur if both 3F and C^ do.

It only remains to calculate P(&). We begin by writing
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where g1,g2,g3,g4, and g5 are the five (independent) events listed in the
definition of g: for example, g1, = {D n B(X; r, [ 1/e] e) = 0}. In the case
where D is a deterministic set, then (by the hypotheses of the the theorem)
P ( g 1 ) = 1 . If D = GL,e, then P(g1) = (1-eh)([1/e] + 1)(2r+1). In either case
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as £z0. Even more simply,

We also have the crude bounds

and

Using the various bounds and approximations (4.6)-(4.9) in (4.5), we get

where f is continuous and positive on [L0, L1] x [0, h1]. The desired rela-
tion (4.4) between P(S') and p(ES) now follows (for E sufficiently small)
from (4.2) and (4.10). |

4.2. Factorization

Let us first introduce some necessary notation: a subset A of AL e has
a horizontal boundary

and a vertical boundary

Let /[ • ] be the indicator function which is 1 if the condition in the
brackets holds, and 0 otherwise. If U' = (u,s) and U= (u, t), we agree to
write Ju, u =

 J
U , uI[s = t].

We next state some diagrammatic inequalities whose proofs (see
[AN], [D1] and [BA]) can be based on the van den Berg-Kesten-Fiebig
(BKF) and Hammersley-Simon-Lieb (HSL) inequalities. We use a detailed
HSL inequality (similar to that of [CKP]) which distinguishes between
contributions from the horizontal and vertical boundaries, so as to be able
to extract explicit factors of e from connections made across horizontal
bonds—these factors are necessary in order to see that the finite-volume
expressions scale correctly as K \ 0.
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Proposition 4.2. For any A, D < = A L , e and X, Y , Z e A L : e ,

and

We are now ready to factorize the probabilities of the point-split
events introduced in the preceding subsection. Although the formulas
appearing in the statement of Theorem 4.3 (the factorization result) may
appear rather forbidding, the proof (see the appendix) is reasonably
straightforward, and simply consists of repeated applications of the
diagrammatic inequalities from Proposition 4.2. In advance of the state-
ment of this result, we make several remarks that we hope will add to the
reader's understanding.



Remarks. 1. The upper bound on the probability of Ss is the first
term in an inclusion-exclusion expansion, and the lower bound also con-
tains the second order (or correction) terms. The reader may find it helpful
if we explain our notation for labeling the correction terms Q*,i,t. All of
these terms have their basis in applications of (4.13) with Zi, playing the
role of X and the cluster of either Z1, (if f = 1) or the origin (when f = 0)
being the set A. We will obtain QB 1 , QB2 and QB3 as recombinations of
horizontal and vertical Boundary terms, Qv is a special term which arises
in considering the Vertical boundary terms, and QI1, QI2 and QI3 can be
traced to the Indicator function in (4.13).

2. The proof is written primarily for when n = 1. The reader who is
particularly interested in the case n = 2 might also find it useful to consult
Section 3.2 in [BA].

3. This theorem can be readily generalized to the case of any natural
number n, with the major difference being that the Q*,i,ls pick up some
additional factors, e.g. QB1,2,1 should be multiplied by l l 3 < k < n P ( Z k -» D)
when n > 2 and l= 0.

4. The factor P ( Z _ 1 ~ > D ) appearing in QB1, 1,0 and QB2,1,0 when
n = 1 should be regarded as being identically 1. The only significance of
n2 — i—1 in (4.17) and (4.18) is that it is a quantity which assumes the
values 1 (resp. 2, resp. neither 1 nor 2) when n = i = 2 (resp. n = 2 and i = 1,
resp. n = i=1).

Theorem 4.3 (Factorization). Let SS(X, X; D;n; r) be as above.
Then
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where the general boundary correction terms are

the special vertical boundary correction term is

and the indicator function correction terms are
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and

5. DIFFERENTIAL INEQUALITIES

5.1. An Inequality for M(L, h)

Proof of Proposition 3.1. We begin as in [BA], by observing that
it is possible to relate ML e to a sum of the probabilities of the events £
introduced in Section 4. Specifically, one way for the event "O-> GL e" to
occur is if there are at least two green sites in the cluster of the origin, yet
the origin is not doubly connected to GL,e. In such a situation, there must
be (see [AB], Lemma 3.5) a unique site X such that "O-> X," "O/»GL,e

off {X}" and "X is doubly connected to GL e" With an additional loss of
probability, one could assume that the double connection from X happens
in the following way: find some e e Zd for which J0,e > 0, and then suppose
that the horizontal bond from X to its neighbor X' = X+ (e, 0) is open and
that there are site-disjoint paths (of open horizontal and vertical bonds)
connecting X and X' to green sites. For technical reasons, we choose to
restrict X to (0, [ 1/e] e) + AL/3,e In the notation of Section 4, we have that

Apply the delocalization procedure (Theorem 4.1) with n=1 and
D = GL,e to get that for L0<L<LC and 0 < h < h 1 (for some positive h 1 ) ,
there exists a positive constant a such that

where r will be determined later. Next, use the factorization procedure
(Theorem 4.3) to obtain an even lower bound which can be represented as
a single leading (positive) term,

less 13 correction terms, which are e times the sums over X of QB1,2, 1,

QB1, 2,0, QB1, 1 ,0 , QB2, 2, 1 QB2, 2,0, QB2, 1 ,0 , QB3, 2, 1, QV, 2 ,1 , Q I 1 , 2 , 2,0,
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QI1,1,0. QI2,2,0. QI/2,1,0. and QI3,2,1—with the entire difference multiplied
by aJ0 ,eL

To find upper bounds for the sums of the correction terms, we use the
facts that

for any site Z e A L , e (the "volume-doubling" compensates for the absence
of translation invariance due to the free boundary conditions), and also

(Note that we can relax the restriction of X to AL/3,e when we use (5.5) to
get upper bounds on the corrections.) Straightforward applications of (5.4)
and (5.5) yield the estimates

and

To aid the reader in filling in the steps that lead to (5.6)-(5.11), we sketch
the derivation of (5.6) for the case when i= 1. Applying (5.4) twice, one has
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Fig. 2. Translation of connection events to build the triangle in (5.12). Each edge indicates
the probability of a connection event.

that s'Z.xQB1,1,0. is bounded above by the sum of two similar terms, one
of which is

Translate the last three connection events (paying the volume-doubling
price) as indicated in Figure 2, and introduce new summation variables
V = U- V and U = Z1, - V+ U- U'. Summing first over X, next over U,
then over V and U, and finally over V gives us the two factors of |J|, a
triangle "diagram," and XL,e,.- Note that this triangle has been opened by
the spatial difference between Z 1 - X + V ' - V + U - U ' and the origin,
that the spatial distance between Z1, and X must be at least r (by the delo-
calization procedure), and that the spatial differences V — V and U—U'
can each be no larger than the maximum range R. In a similar fashion, one
can establish the rest of (5.6)-(5.11).

Each of the remaining two corrections contains an unusual term
requiring special attention. First, in QB3, 2,1 > it is not difficult to see that

so
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Finally, an analysis of the term PL,h
L,e(Z1 -> Z2, Z1, -> GL,e)—recall that Z1

and Z2 have the same time coordinate but are widely separated in space—
shows that, as e \ 0,

Turning to the leading term, <£, we get a lower bound on PL,h
L,e(Zi -> GL,e)

by requiring the connection to take place inside Zi, + AL/3,e:

Using the bounds (5.6)-(5.16) in what we got by factorizing (5.2), and
taking the e \ 0 limit, we obtain

for Lo<L<Lc., where we have also made use of (2.20) and the
monotonicity properties of the diagram functions in both L and L

The term h/M is bounded near the critical point (L = Lc, h = 0 +) since
the concavity of M in h tells us that h/M < 1/x. Thus for any (A, h) with
Lo<L<Lc and 0<h<h 1 there is a (positive) constant K such that

Now we know that ML/3, ML, and M2L all converge to M as L-> oo
for all Le[0, oo) and h>0. Furthermore, M(L, h) is a positive function
which is increasing in both L and h on (0, oo)2. Letting a = M(L0, ho)/2» we
can use a compactness argument to show that for every 0<L0<LC<
L1, < oo and 0<h 0<h 1 < oo, there is an L sufficiently large so that
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on [L0,„, L1,] x [h 0 , h1]. It follows from (5.19) that for large enough L,

uniformly on [L0, L1,] x [h0, h1]. By a related argument we also have that
if L is sufficiently large, then for all Lo<L<L1 and h0<h<h1,

Using the bounds (5.20) and (5.21) in (5.18) gives us

on [L0, Lc] x [h0, h1,]. When the triangle condition (2.13) is satisfied, we
can make the bracketed factor in (5.22) positive by taking r sufficiently
large, and this proves inequality (3.1). |

5.2. A Pair of Inequalities for x (A)

Proof of Proposition 3.2. We first briefly indicate how one obtains
the inequality (3.2), which holds for all L—here we follow [AN] (also see
[ D1 ]). Let z be a site in AL which maximizes the sum on the right-hand side
of (2.28), and denote that sum by xL,e( L; z). By Russo's formula (cf. [Gr]),

It is now easy to argue, say by the BKF inequality, that

and we get (3.2) by then sending e to zero.
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The starting point for a complementary inequality is the observation
that

As in the preceding subsection, restrict X to (0, [ 1/e] e) + AL/3<e and force
X' = X+(e,0) with J0,e>0. Now delocalize to obtain

Factorizing the probability in (5.26) with the aid of Theorem 4.3 gives us
a new lower bound on dxL,e/ dk having the form of a single positive term
(&) less four corrections, which are the sums over X and Y of QB1,1,0

Q B 2 , 1 , 0 , QI1,1,0, and QI2,1,0—all multiplied by aJ0, e/( 1 - eJ0,e
).

Using arguments similar to those of the preceding subsection, we find
that

and

For the leading term, write PL
L,e(O-» X, O/-> Y) = PL

L,E(O^ X)-
P*L,e(O-» X, O-» Y), apply the skeleton inequality (4.14), and make
estimates of the type found earlier in this section to get that
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Using the bounds (5.27)-(5.30) in the factorized quantity obtained from
Theorem 4.3, taking the continuum limit, and using the monotonicity
properties of the diagrams as in the preceding subsection, we find that

for all A < AC. Since x(L) is nonzero, nondecreasing and bounded from above
on [L0, L1,] (recall that L1, <LC by hypothesis), we have by a compactness
argument similar to those which gave (5.20) and (5.21) that there is an L0

such that whenever L> L0 and L0,„ < L<L1,,

The desired inequality (3.3) now follows by taking r large—the term
on the right-hand side of (5.31) which is linear in XL is negligible (in com-
parison with the other terms) when A0 is close to Lc.

APPENDIX. FACTORIZATION

Proof of Theorem 4.3. We give the proof for n = 1 , and then
indicate how the argument changes for n = 2.

Begin by conditioning on (or partitioning according to) the cluster, C,
of the origin:

Use (4.13) to get an upper bound on P ( Z 1 -> D off A0), and then sum over
A0 to get

This proves the upper bound when n=1. If n = 2, one further decomposes
(A.1) according to the cluster (call it A1) of Z1, (in what is left of AL after
the removal of A0), and then uses the upper bound from (4.13) twice—first
for the connection from Z2 to D, and then for the connection from Z1,.

The lower bound on P(SS) follows by estimating the probability gained
by replacing P ( Z 1 -> D off A0) with P(Z1, -> D) in the derivation of (A.2).



122 Barsky and Wu

Now using the lower bound in (4.13)—which accounts for the entire differ-
ence between the two sides of (A.3)—and then performing the sums over A0,
we get

In the first correction term, replace P(O-> X, O/> D, U e d H ( C ) ) by
P(O-> X, O> U, O > D ) and then use the skeleton inequality (4.15) to
bound this term from above by four terms which we describe instead of
writing down. The first two terms together comprise the part of QB1,1,0

corresponding to the choice of P ( U — > D) in the last bracket in (4.17), the
third term is the part of QB2,1,0 corresponding to the choice of P( U —> D)
in the bracket in (4.18), and the last term is zero since it involves the
product P ( U > X ) P ( Z 1 -> U')—recall that X preceeds Z1 in time, and U
and U' have the same time.

To recapture an important factor of E, a more careful treatment of the
term in (A.3) involving the vertical boundary of C is required. The key
point to be realized is that for U to be in the vertical boundary of the
origin's cluster, there must be some site U' already in that cluster which has
U for a neighbor, and whose horizontal bond to U is open. Therefore,

The right-hand side of (A.4) is analyzed as in the preceding paragraph, and
bounded from above by the sum of four terms. To combine these terms
more compactly with those found above, it is convenient to interchange U
and U' here. Then the first two terms are just the part of QB,1,1,0 corre-
sponding to the choice of P( U' -> D} in the last bracket in (4.17), the third



term is the part of QB2 ,1,0 that comes from taking P(U'-^D) in the
bracket in (4.18), and again the last term is zero.

Finally, we use (4.15) to bound the last term in (A.3) from above by
the sum of four terms. The first two combine to give us QI1,1,0, the third
is Q I 2 , , 1 , 0 - and the fourth is zero because it contains P ( Z 1 > X ) . This
completes the proof of Theorem 4.3 in the case n = 1.

When n = 2, the argument is the same in spirit, although the details
are messier. One first estimates the difference P(Z2 ->D) — P(Z2 -> D off
AOU A 1 ) . Half of the corrections resulting from this estimate involve con-
nections that pass through A0 and are treated just as above; these con-
tibute to QB1,2,0 QB2,2,0,QI1,2,0. and Q I 2 , 2 , 0- The other half involve
connections passing through A1; these are analyzed in a similar fashion
using (4.14) in place of (4.15), and make contributions to QB 1 , 2 , 1 , Q B 2 , 2 , 1 ,
QB3,2,1, QV,2,1 and QI3,2,1. Let us comment on the presence of QB3, 2,1 QV,2,1

QV,2,1 and QI3,2,1, and on the absence of a QI1,2,1
" and a "Q I 2 , , 2 , 1 .

" In
place of corrections involving P(U-* X] P ( Z 1 - > U ) , which we argued
were zero, we now pick up negligible (but nonzero) terms involving
P(U-* Z1,) P ( Z 2 - > U')—these lead to QB3, 2 , 1 - There is an additional term
appearing in the bound of P ( Z 1 -» D off A0, U e d v ( C ( Z 1 ) ) ) since an alter-
native to the kind of decomposition we saw in (A.4) is that U = Z 1 t h i s
leads to Q v , 2 , 1 - The entire correction stemming from the indicator function
is QI3,2, 1. which need not be further decomposed since it already contains
the negligible factor P ( Z 1 -> Z2, Z1 -> D). Finally one has to compute
corrections in the leading term due to the difference between P ( Z 1 -> D) —
P ( Z 1 -» D off A0), but this is exactly as in the case n = 1, except that there
is now a factor of P(Z2 -> D) present. |
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